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Abstract—The paper deals with the frontal propagation velocity of a spherically symmetric flame
converging to a focussing center. Such a problem can describe burning in a disunited zone in the laminar
theory of a turbulent flame. It is shown that at Lewis number exceeding unity, the temperature in the
reaction zone increases together with propagation velocity as the front approaches the center. By
contrast, at Lewis numbers below unity, propagation is slowed down and the temperature in the reaction

zone increases to extinction.

The problem is solved under the assumption of strong temperature-dependence for the reaction rate.
The asymptotic approach developed in solving this problem can then be applied to investigate the
normal flame propagation stability. The article intends to show that at Lewis number exceeding unity
propagation is unstable and a self-oscillation regime sets in.

NOMENCLATURE

see equation (1.5);

dimensionless concentration, referred to Co;
initial concentration of unburned gas;
specific heat;

activation energy;

TW;

see equation (2.21);

Lewis number;

thermal thickness of flame (= x,/Us, pyc,);
dimensionless activation energy (= E/R°T;);
order of reaction;

strength of surface source;

universal gas constant;

dimensional radial coordinate, referred to I;;
coordinate of flame front;

see equation (4.5);

dimensionless temperature, referred to T, ;
temperature of unburned gas;

adiabatic temperature of burned gas;
dimensionless time, referred to Ir/U,;
dimensionless radial component of gas
velocity, referred to U, ;

normal velocity of flame;

see equation (1.4);

see equation (2.3);

see equation (4.4);

dimensionless frequency factor, referred to z,;
frequency factor at T;.
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Greek symbols

0, Dirac function;

&, thermal expansion coefficient of gas
(= To/Tp);

0, see equation (4.5);

g, see equation (2.21);

o, dimensionless density, referred to p,;

Py,  density of combustion products;

7,®, see equation (2.4);

K, dimensionless thermal conductivity, referred
to Ky,

Ky,  thermal conductivity of combustion
products;

A, K/T;

¢, see equation (5.8).

1. FORMULATION OF PROBLEM AND
FUNDAMENTAL EQUATION
CoNSIDER spherically-symmetric motion, whereby a
combustion wave in a combustible gas mixture at
constant initial temperature T, and concentration of
the combustible component C, converges to the center
of symmetry (Fig. 1). Such a wave is generated, for
example, by a spherical source imparting to the mixture

r

F1G. 1. Temperature and concentration profiles in con-
verging spherical flame (arrow indicates direction of motion,
curves 1, 2, 3, refer to cases L =1, L > 1, L < 1 resp.).

the amount of energy necessary for igniting it. Such
a scheme may serve as a model to describe the burning
of a separate mole of gas mixture in a disunited
burning zone of a large-scale turbulent flame, when
each mole’s burning spreads up from its surface (see
the laminar theory of a turbulent flame [1]).
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As the front converges, its curvature increases con-
tinuously, with the attendant changes in the process
taking place in the reaction zone. The latter, in turn,
governs the variation of the propagation velocity of
the flame.

We are concerned with the motion of the front at
distance sufficiently remote from the heat source,
where the initial conditions are substantially “for-
gotten”™ and the front has settled down to a certain
limiting regime. which we wish to determine. As is
known, the flame represents a wave involving diffusion
and conduction, accompanied by release of chemical
cnergy in the form of heat and thermal expansion of
the gas. In the case of similarity of the temperature
and concentration fields (L = 1), combustion proceeds
with a constant temperature at the front [2]. Here,
the only characteristic parameter outside the reaction
zone is the thermal thickness of the flame Ir. which
also represents the characteristic distance from the
center at which the curvature becomes effective with
regard to the process in the reaction zone and to the
propagation velocity.

In the case of non-similarity (L # 1), propagation
takes place with a variable temperature at the front
and with the attendant steep change in the reaction
rate, dictated by the large value of E/R°T;,. As will be
shown later, the corresponding characteristic distance
as above is not Ir, but (E/R°T)Ir.

Propagation of a laminar flame is described by a set
of equations referring, respectively, to the diffusion of
the reactive medium, the thermal conduction, the state
of the gas (reduced—on account of the low propagation
velocity relative to that of sound--to the requirement
of dynamic incompressibility), continuity, and momen-
tum. With the dimensionless variables appropriately
chosen, the above equations may be formulated as
follows:

Diffusion:
(TC+ U cC 110 ) ZFC WC.T) (L1)
) -+ pU——= 5 — T —— " .
f Ot f cr Lizﬂr" "o

Heat conductivity:

cT cT 1@ oT
0 ';["“f‘er* 3 ;—K(T)rzﬂ—-?—(l—s}W(C, T) (12)
C T er or

o
Continuity and dynamic incompressibility:
cp 1 ¢ 1

— 4 —(rPpU) =0, =
ct I'Z("rr(rp) P T

(1.3)

The reaction rate W, C, and T are interrelated
through Arrhenius’ equation:

1
lV:dTMN“ﬁW?mpN(L—?> (1-4)

where the dimensionless constant A4 is determined by
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the parameters of the one-dimensional steady flame:

A = z,nCq pyipe, "U ANT "exp(—= N). (1.5)

Here z, is the frequency factor at T;; n is the order
of the chemical reaction; and N is the dimensionless
activation energy determined as E/R°T,. In the theory
of flame propagation, the stipulation is always N > 1,
L.e. strong temperature dependence of the reaction rate.
In that case, as will be shown in Section 4, 4 is of
the order of unity relative to N, and the width of the
reaction zone—of the order of I/N relative to .
In other words, the velocity U, is smaller than its
counterpart at zero activation energy and absolute
temperature of the unburned gas [z(0) = 0] by a factor
equal to N'*"2expiN. If however, the above stipu-
lation is dispensed with, the reaction must be assumed
to be practically at a standstill. This, in turn, rules
out one-dimensional steady propagation.

2. DERIVATION OF EQUATION OF MOTION

As point of reference in time {t = 0), we take the
moment of focussing at which the front radius r,
vanishes. The time preceding this moment is taken as
negative.

As is known [2], the width of the reaction zone is
ofthe order 1/N relative to I+. Accordingly, at distances
[F—rs| > 1/N, the latter may be regarded as a point
source, and the velocity W in equations (1.1) and (1.2)
may be replaced by a d-function of strength Q:

W(C. TY— Qo(r—ry). (2.1

As will be shown in Section 4 (see also [10]), the

following asymptotic representation of Q holds at the
zeroth approximation relative to 1/N:

Q =~ expIN(T—1). (2.2)

In the sequel, we shall conveniently introduce a co-

ordinate system (x, ) linked with the flame front and {;:

(2.3)

X =iy

Insofar as the characteristic distance (at which the
front curvature becomes effective) is of the order N.
we introduce new variables:

t

o="L1 = (2.4)
N N

The correctness of chosen scales of stretching will
be verified a posteriori through the requirements of
asymptotic matching.

In conjunction with (2.1)-(2.4), the set (1.1)-(1.3)
becomes:
1 T do T cT x\?¢
NPE Pa e YT <“*m>

¢ \2&T
x K(l + 3*) (ﬂ—+(1 —e)exp[IN(T—1)]d(x) (2.5)
N cx
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1 ac d(I>8C+ U@C_I H—x -2
Npé"c dr@x p ax L NO

0 x \?oC
X — K(I + ﬁ) o exp[3N(T-1)]8(x)

x\" %o x \?
=) S+ U=0
+( +N<D> 8x< N(D) P

_ 1
=T
whose solution is sought in the form of the following

asymptotic expansions in (1/N):

2.6)

1dp d®op

dr dx

2.7)

~

1
= Co%x, 1)+ N Clx, 1)+
Clx,1) =

where 0 for x>0

_ 0 I
T=T (x,r)+NT(x,r)+

where T%x,7)=1 for x>0

- U° L
U——U(x,r)+NU(x,r)+...

1
p = p°(x, t)+ﬁp1(x, )+...

® = 0%)+ L @)+
N A
Equations (2.5)-(2.8) yield, for the zeroth approxi-
mation, the following set of quasi-stationary equations:

) (UO dq>°>aT°

drt / ox
o . oT°
= —x®—+(1—g)exp3Ti(x) (2.9)
ox  0x
50 O_d(DO oce
dr / Ox
1o ,oc -
=——K’—- .1
Lé’xk e expzT'o(x) (2.10)

do° 1
—(pU"—p°~7>=0; p°=ﬁ; KO=xk(T% (211

which, solved subject to the boundary conditions:

TY—=o0,7)=¢; CO(—o0,7)=1; U%—00,7)=0 212
T%0,7)=1; CcY%0,1)= '
yield in turn for x < 0
1do° aT®
Trar O
0__\L
c°=1—<T "’) 2.13)
1—¢
1 do°
o_ ____ o__
U°= P (T°—¢).
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In addition, integrating (2.9) near x = 0, we find:

0.0 < 2qnf -1 9%
TH0,7)=2In .
e dt

In order to find the second equation linking T%(0,7)
and ®°(z), we need information on the next approxi-
mation relative to 1/N. To this end, we use the linear
combination of (2.9) and (2.10), obtained by eliminating
the reaction rate:

2.14)

%p%(T—i—(l—a)C)
+p<U—gq~)>A
dr/é
=(1+i>vzix<1+i> <
N®/ 0x Nd/ ox

1—¢
X (T+—L— C>. (2.15)

At the first approximation, (2.15) and (2.7) have the
form:

4 (T+(1—¢)C)
X
2

0
P05 (T+(1-)C")

R L de®\ o
P P e

d@°
X (TO+(1-£)C%) + p(’(UO—T)
T

X i(T1+(1—za)C1)
Jx

o [dx® 0 1—¢
- "*Tl— TO __CO
ox (dTO ax< T >

00 L 1-e

240 @ !
+ 2 (TO L8c°> (2.16)

@9 dx
ap® 0 do° do!
4+ — UO ) S | Ul o_~" 0
ot (3x<p drp+ p drp)
2p°0°
o T
p = 702"

Bearing in mind (2.8), equation (2.16) yields for x > 0
Tl(x, 1) = THO,1). (2.18)

Integrating (2.16) with respect to x in the (— o0, 0)
interval, and bearing in mind (2.18), (2.13), and the
condition T!(— 00, 1) = C(~ 0, 1) = 0, we obtain:
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ot O
{
o [ PUAT " + (1 —)C°—1)dx

-

9] O
T f

2 [0 ¢ l1—¢
=30 ( KO}T\'<TO+ I C0>dx

ps

{

p’UNT 4+ (1 —6)C'—1)dx

(2.19)

T'{0. 1) is thus expressed through the zeroth approxi-
mation of the problem. Using (2.13), we convert from
x to T" as variable of integration, whereby (2.19)
(2.19) becomes:

O @0\ [T
Cde? \dr . T 1—¢
2 (1R(T) T—e\-!
=— | —|1-— 2.
o) -] e e

so that, in conjunction with (2.14), we have a non-linear
differential equation for ®°.
Introducing new variables G and ¢,

1. O N\L-1
qW==an 5””[1—<T ”) }dT
. T 1—¢

(2.21)

= —¢ ') 1_<,7::f o dT
° . T 1—¢

we have by (2.14):

dG
T'0,7)=2In

az (2.22)

and by (2.20)~(2.22):

de+7 dG 3‘ dG 2 [dG\? (2.23)
2 ne—=— . .
dé? dé d¢  G\d¢

The integral in (2.21) changes sign at L =1. For
7 < 0, as was already noted, & > 0 corresponds to the
solution for L > 1, and & < 0— to that for L < 1.
Denoting:

dG .
-~ = P(G).

(2.24)

Equation (2.23) is a first-order equation in P(G),
namely:

dP _2P(1-GPlnP)

= 7 2.25

dG G 223)

Only solutions for which d®°/dr is negative, i.e.
P > 0, have a physical meaning.

In the (G, P)-plane, the integral curves of equation
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(2.25) from the schematic pattern shown in Fig. 2. with
the arrows indicating positive time. At t—o0(G— 4 o),
the flame front must tend to normal propagation, for
which P = 1. This requirement is the boundary con-
dition of the problem.

3. BEHAVIOR OF SOLUTIONS OF (2.25)
Near the point P=1, G = +co, the following

asymptotics is valid for the solution of (2.25):

P~1+ (3.1)

G

As can be seen from Fig. 2,in the region G < (L < 1),
a single monotonically-descending curve runs from
P=1.G=—xtoP =0,G=0P ~ G?. Accordingly,

y=d

F1G. 2. Plane of equation (2.25).

as the flame front approaches the center, its propa-
gation velocity decreases. As is seen from equation (2.2),
the temperature at the front also decreases mono-
tonically to —oc. However, as is shown in [4] (see
also [2]), for the flame to be capable of propagation,
the temperature drop in the reaction zone cannot
exceed ~ RT2/E, otherwise the flame is extinguished.
In the region G > (L > 1), the picture is different:
a whole family of curves originatesat P =1, G = +=0;
part of them, monotonically ascending, terminate at
P= +o,G= +0[G ~ 2/(Pln P)]. At first glance, all
these curves have a physical meaning, implying exist-
ence of an infinite number of solutions, the propagation
velocity of each of which increases to + oo together
with the temperature at the front. This circumstance
(just as in the case L < 1) reflects the intermediate
character of the obtained asymptotics [3]. It should
be noted that the infinite set of solutions contains one
corresponding to a minimal propagation velocity for
every r(G). As can be seen from the figure, this solution
is the envelope of the curves for which P - 0 at G—0.
Similar non-uniqueness, associated with a minimal
propagation velocity, is discussed in [5] and [6] which
deal respectively with wave propagation in a chain
reaction and with a converging shock wave. In our
own casc, the hypothesis of realization of the minimal
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propagation velocity may be verified through numeri-
cal analysis, using initial data.

4. VERIFICATION OF ASYMPTOTIC
RELATIONSHIP (2.2)

Equations (2.9) and (2.10) integrated near x =0
yield:

T -0,

(=09 = (1—¢)exp3T(0, 1) 4.1)
éx

1 6C%-0,7) 17t

[ = o0 $THO, 7). 42

The above relationships follow from the assumed
asymptotic relationship (2.2). We shall show that they
are a rigorous consequence of the matching conditions
for the respective asymptotic solutions inside and out-
side the reaction zone; by this means, relationship (2.2)
will be verified at the zeroth approximation relative to
1/N. Our point of departure is the set of diffusion and
conduction equations with distributed heat and mass
sources. To this end, the point source in (2.5)-(2.7)
must be replaced by a corresponding reaction rate W:

exp+T18(x) = W(C, T). 4.3)

Insofar as the width of the reaction zone is of order
1/N relative to I, we take as the characteristic space

variable for the reaction zone;:
X = xN. (4.4)

In this region, the asymptotic expansions for tempera-
ture, concentration, and the constant 4 are sought in
the form:

1
T= 1+NH(X,‘L')+...

i 45)

A=A+....

The set (2.5)-(2.7), modified as per (4.3)-(4.5) for the
zeroth approximation relative to I/N, yields:

820 Ocn

5‘}‘5"{'(1—8)1‘1 S§"expfl =0
1 e (46
I 7x? — A%S"expf =0,

Insofar as T%x,7) =1, C%x,7) =0 for x >0, the
matching conditions read:
8(+0,7)=TH0, 1) 4.7

00(— 0, 1) oT%(—~0,1)
o0X h Ox

4.8)
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28(—0,7) _ aC%(~0,1)

49
X éx 49)

S(+o0,1)=0;

Equation {4.6), in conjunction with (4.7) and (4.9),
yields:

1—
e r)+—z—8 S(X.0=TH0.0)  (4.10)
and may be reduced to a single equation in 0.
& Al
st (T = )" expl = 0 4.11
5‘X2+(1—s)""( )"exp @11
0N 24°1¢ (F
— m— T'—0yexp0df (4.12
<6X) (1_g>n—1Jh‘ yrexp0do (4.12)
and
80(—c0, t)\*  24%LrexpT! [°
= - Zy Zd
( X ) e I
24% ! exp THO, 1)
= 4.13
(1_8)n~1 ( )
By (2.13), we have for normal propagation:
1do° ETO(—0,
1 0D 0 =0 @14
¢ drt 0x
and equations (4.8), (4.13), and (4.14) vield:
1—¢ 1+n
A = (__..fl__ (4.15)

20!

which represents the principal term for the asymptotics
of Uy (1.5},
Finally, by (4.13) and (4.15):
(-0, 1) '

P {1—g)exp5T0,7)
which, in accordance with (4.8), is equivalent to the
sought relationship (4.1). Equation {4.2) is an elemen-
tary consequence of (4.10) and (4.16).

(4.16)

5. ON THE INSTABILITY OF NORMAL FLAME
PROPAGATION

The asymptotic approach developed above may be
applied to the one-dimensional-flat flame equations to
examine the stability of its normal propagation. In the
case of similarity between the temperature and con-
centration fields, ie. at L = 1, normal propagation is
steady—a fact established by several authors using
various analytical methods [7-9]. At L # 1, however,
the corresponding mathematical problem is seriously
complicated. It appears that under L > 1 and N » 1
the class of one-dimensional perturbation may be
found, in relation with which the normal flame propa-
gation is unstable.

The subsequent numerical analysis shows the possi-
bility of a steady self-oscillatory regime setting in rather
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than normal propagation. In the case of plane one-
dimensional problem, the set (1-1-3) becomes:
Diffusion:

("C+ U(?C_l ¢ _(T)[’C C.T) 61
P TP R T T ot U

Heat conductivity:
éT é&T ¢

potpU—=—x(T) il+(1 —gW(C, T) (5.2)
ct or

or  ¢ér
Continuity and dynamic incompressibility:
ép @ 1
—t—pU =0 = — 53
oo’ T )

Let the flame propagating in the negative direction
of axe r, where r = 0, corresponds to the flame front
position at the moment of initial perturbation ¢ = 0.
Let us introduce a coordinate x, connected with the
flame front and stretched variables ® and 7, (see 2.3
and 2.4) r, = flame front position at moment .

In conjunction with (2.1)-(2.4), the set (5.
becomes:

1)-(5.3)

1 T d(D@T+ UﬁT
Np pdré’ P ox
o) ’1T
=k (1) exp[IN(T-1)]5(0) (54)
0x  0Ox
1 éc d(DcC+ U@C
Npﬁt pd‘L’ 0x P ox
L O 00 expBNT— 1500 (55
Lf‘x Ox cXpLz B X) )
1dp ddép ¢ 1
—_———— 4+ —pU =0, =—. (56
N ér  dt O0x ("xp P T (56)

Hence, after the treatments, like those undertaken
in Section 2, for the front flame coordinate in (P, G)
plane, the equation yields:

dP
— = —2PInP
dG
where P and G are determined in (2.21) and (2.24).
The straight line P =1 corresponds to the normal

flame propagation.

(5.7)

fi"Ij>0 under 0<P<l
dG

d—}D<O under P>1
dG

In the case of L < 1, with the time growing, the integral
curves tend to the line P = 1. At L > 1, with the time
growing, the integral curves of the equation (5.7) get
away from P =1, which indicates instability of the
normal flame propagation. The equation (5.7) describes
the asymptotic solution of set (5.1)—(5.3) at N — oo,
and it is right only for a limited space of time (t ~ N).

In order to clarify the subsequent development of
the propagations, we shall solve numerically the prob-
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lem of steady propagation triggered by an ignition
source.

Let, for the sake of simplicity, the initial ignition
source be symmetrical with respect to r = 0. Then the
convective terms in the equations (5.1)(5.2) may be
removed by the transition to new coordinates

(Lagrangian).
,[ plx, t)dx = {.

0
In this new system of coordinates, the set (5.4)—(5.6)
becomes:

oT o oT °C_12 o
3 fu-yF;
R R L L Lﬁg a

where A=«/T, F=TW,

(5.8)

(5.9)

The problem is solved in the half space — o0 < { <0,
the solution being sought under the following initial
and boundary conditions:

For —05<{<0: T0,0) =1
for —o<{< —05: T, =
: 0.0y =¢ (5.10)
For —o < {<0: C(0,0) =1
cC T
S0 =0=0
[l 0

The set (5.9) and (5.10) is solved in a quasi-explicit
difference scheme of the “tripod” type, with steps
constant both in time and over the half-space and
related through Courant’s stability condition:

(A7) = 3(AD* ().
For k = \/{(T), n = 1, the scheme has the form:
Tjk+1_Tjk= 1y2(7}+1 erk_T}k_rI}k_l)+(]_£)ij
(A7) (AD*\ J(TH (TR
ari-cf 1 (C}+1~C}‘_C}‘—C}‘_,>_F
(A7) NG TN N

T LAD?

where Fj = N2C+*! expN(l —(YTh); j=1.2.3,...
(j= correspondmg tol=0)andk=1,2,3,... (k=1
corresponding to T = 0).

The numerical calculation showed (Fig. 3) that for

-¢,

100 Lo 120 130 140
T

F1G. 3. Flame front velocity as a function of time
(e =025 N=30,L=2).
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L > 1 and sufficiently large N, a self-oscillating regime
sets in rather than steady propagation.
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SUR UN FRONT DE FLAMME SPHERIQUE ET CONVERGENT

Résumé—L’article traite de la vitesse de propagation frontale d’'une flamme a symétrie sphérique qui
converge vers le centre. Ce genre de probléme peut décrire la combustion dans une zone désunie dans
la théorie laminale d’une flamme turbulente. On montre que pour un nombre de Lewis supérieur &
I'unité, la température dans la zone de réaction augmente, ainsi que la vitesse de propagation, lorsque
le front s’approche du centre. Au contraire, quand le nombre de Lewis est inférieur & I'unité, la propagation
est ralentie et la température dans la zone de réaction conduit a I’extinction.

Le probléme est traité avec 'hypothése d’une forte dépendance de la vitesse de réaction vis a vis
de la température.

L’approche asymptotique développée en résolvant ce probléme peut étre appliquée a I'étude de la
stabilité de la propagation d’'une flamme. On montrerait que la propagation est instable pour un nombre

de Lewis supérieur a I'unité et qu’il s’instaure un régime oscillatoire.

DAS VERHALTEN EINER KUGELFORMIGEN FLAMMENFRONT

Zusammenfassung—Die Arbeit befaBt sich mit der frontalen Ausbreitungsgeschwindigkeit einer kugel-
symmetrischen Flamme, die in einem Zentrum zusammenliuft. Ein Problem dieser Art kann mit Hilfe
der Schichtentheorie fiir turbulente Flammen beschrieben werden. Es wird gezeigt, daB fiir Lewis-Zahlen
grofer 1 die Temperatur in der Reaktionszone und die Ausbreitungsgeschwindigkeit ansteigt, wenn
die Flammenfront sich dem Zentrum nahert. Im Gegensatz hierzu verliuft die Ausbreitung langsamer
bei bis zum Erldschen steigender Temperatur in der Reaktionszone fiir Lewis-Zahlen kleiner 1. Bei der
Losung des Problems wird angenommen, dal die Reaktionsrate stark von der Temperatur abhiingt.
Dieentwickelte Niherungslosung kann bei der Untersuchung der Stabilitiit normaler Flammenausbreitung
angewendet werden. Der Artikel soll zeigen, daf3 bei Lewis-Zahlen groBer 1 die Ausbreitung instabil
wird und Eigenschwingungsverhalten einsetzt.

O CYXAKOMEMCS COEPUYECKOM ®POHTE NMJAMEHMU

AnHoTauus — B craThe paccmaTpusaeTcs (pOHTANbHAS CKOPOCTbL PACIPOCTPaHEHMs cdepUHecKu
CAMMETPHYHOIO TNTaMEHH, cxoasiierocs B dokyc. C moMowhkio 3Toi 3anayu MoXeT BbiTh OMMCaH
MIPOLIECC TOPEHUSA B PATBEAMHEHHON 30HE B TEOPHUU paccrioeHus TypOyieHTHOrO miamenn, IokasaHo,
4TO €CAU YHuCo Jlbtonca Gosblie eaMHULbl, TO TEMIIEPATYPA B 30HE PEAKLNHK BO3IPACTACT BMECTE CO
CKOPOCTBIO PACIIPOCTPAHEHHUA [TaMEHH MO Mepe Mpubnnxerus GponTa k hokycy. M Haobopor, ecin
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4uCo JIbIoMCa MEHbBILIE €AUHU UL, TO PACHPOCTPAHEHUE 3aMEAJIAETCS. @ TEMITEPATYPA B 30HE PEAKLMH
nazgaeT 0 3aTyXaHus.
3anaya pewleHa 1npy yCJIOBKHH, YTO CKOPOCTb PEAKLIMK CHIBHO 3aBHCHT OT TEMIEPATYPbi.
ACHUMOTOTHYECKHI METOA, pa3paboTaHHBIH MPU PELUCHUU ITONH 3adauH, MOKET ObITh UCITOTL3IO-
BaH 718 W3YYeHUs YCTOHYWBOCTH HOPMANBHOU CKOPOCTH PacOpOCTPAHEHWA MnameHu. ABTOpbI
CTaTbM XOTAT MOKA3aTh, YTO MpH uuciae Jibtouca Oonblue €OMHULbI PACTPOCTPAHEHUE MITAMEHM
SBJSETCH HEYCTOMUYMBBIM U BOZHUKAET PEXUM aBTOKONeBAHUH,



