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ON A CONVERGING SPHERICAL FLAME FRONT 
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Abstract-The paper deals with the frontal propagation velocity of a spherically symmetric flame 
converging to a focussing center. Such a problem can describe burning in a disunited zone in the laminar 
theory of a turbulent flame. It is shown that at Lewis number exceeding unity, the temperature in the 
reaction zone increases together with propagation velocity as the front approaches the center. By 
contrast, at Lewis numbers below unity, propagation is slowed down and the temperature in the reaction 
zone increases to extinction. 

The problem is solved under the assumption of strong temperature-dependence for the reaction rate. 
The asymptotic approach developed in solving this problem can then be applied to investigate the 

normal flame propagation stability. The article intends to show that at Lewis number exceeding unity 
propagation is unstable and a self-oscillation regime sets in. 

NOMENCLATURE 

see equation (1.5); 
dimensionless concentration, referred to CO; 
initial concentration of unburned gas; 

specific heat; 

activation energy; 

TW; 

see equation (2.21); 
Lewis number; 

thermal thickness of flame (= K~/U~P~CJ; 
dimensionless activation energy (= E/R”Tb); 

order of reaction; 
strength of surface source; 
universal gas constant; 

dimensional radial coordinate, referred to 1, ; 
coordinate of flame front; 
see equation (4.5); 

dimensionless temperature, referred to Tb; 

temperature of unburned gas; 
adiabatic temperature of burned gas; 
dimensionless time, referred to lT/Ub; 
dimensionless radial component of gas 
velocity, referred to U,; 
normal velocity of flame; 
see equation (1.4); 

see equation (2.3); 

see equation (4.4); 
dimensionless frequency factor, referred to zb ; 
frequency factor at Tb. 

Greek symbols 

6, Dirac function; 

6 thermal expansion coefficient of gas 

(= WT,); 
see equation (4.5); 
see equation (2.21); 

P, dimensionless density, referred to pb; 

Pbr density of combustion products; 

7, @, see equation (2.4); 

6 dimensionless thermal conductivity, referred 
t0 Kb; 

Kb, thermal conductivity of combustion 
products; 

i I> K/T; 
Y 
i> see equation (5.8). 

1. FORMULATION OF PROBLEM AND 
FUNDAMENTAL EQUATION 

CONSIDER spherically-symmetric motion, whereby a 
combustion wave in a combustible gas mixture at 

constant initial temperature TO and concentration of 
the combustible component C,, converges to the center 

of symmetry (Fig. 1). Such a wave is generated, for 
example, by a spherical source imparting to the mixture 

FIG. 1. Temperature and concentration profiles in con- 
verging spherical flame (arrow indicates direction of motion, 

curves 1, 2, 3, refer to cases L = 1, L > 1, L < 1 resp.). 

the amount of energy necessary for igniting it. Such 
a scheme may serve as a model to describe the burning 
of a separate mole of gas mixture in a disunited 

burning zone of a large-scale turbulent flame, when 
each mole’s burning spreads up from its surface (see 
the laminar theory of a turbulent flame Cl]). 
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As the front converges, its curvature increases con- 
tinuously, with the attendant changes in the process 
taking place in the reaction zone. The latter. in turn. 
governs the variation of the propagation velocity of 

the flame. 

We are concerned with the motion of the front at 
distance sufficiently remote from the heat source, 

where the initial conditions are substantially “for- 

gotten” and the front has settled down to a certain 
limiting regime. which we wish to determine. As is 

known. the flame represents a wave involving diffusion 
and conduction, accompanied by release of chemical 
energy in the form of heat and thermal expansion of 

the gas. In the case of similarity of the temperature 

and concentration fields (L = 1). combustion proceeds 
with a constant temperature at the front [2]. Here, 

the only characteristic parameter outside the reaction 

zone is the thermal thickness of the flame 2r. which 
also represents the characteristic distance from the 

center at which the curvature becomes effective with 
regard to the process in the reaction zone and to the 

propagation velocity. 

In the case of non-similarity (L # l), propagation 
takes place with a variable temperature at the front 
and with the attendant steep change in the reaction 

rate, dictated by the large value of E/R”Tb. As will be 

shown later. the corresponding characteristic distance 

as above is not /r , but (E/R”Th)b. 
Propagation of a laminar flame is described by a set 

of equations referring, respectively, to the diffusion of 

the reactive medium, the thermal conduction, the state 
of the gas (reduced~- on account of the low propagation 
velocity relative to that of sound --to the requirement 

of dynamic incompressibility), continuity, and momen- 
tum. With the dimensionless variables appropriately 
chosen. the above equations may be formulated as 
follows : 
Diffusion: 

Heat conductivity: 

Continuity and dynamic incompressibility: 

ip I? 
;t + r_’ 5 (r2@) = 0. p = _! 

T’ 
(1.3) 

The reaction rate IV, C, and T are interrelated 
through Arrhenius’ equation: 

W = z(T)AN’+“p”C”expN (1.4) 

where the dimensionless constant A is determined by 

the parameters of the one-dimensional steady flame: 

Here zb is the frequency factor at Th; II is the order 
of the chemical reaction; and N is the dimensionless 
activation energy determined as E/R”T,. In the theory 

of flame propagation, the stipulation is always R; >> 1. 

i.e. strong temperature dependence of the reaction rate. 
In that case, as will be shown in Section 4, A is of 
the order of unity relative to N, and the width of the 
reaction zone--of the order of l/N relative to I,. 
In other words, the velocity Ub is smaller than its 

counterpart at zero activation energy and absolute 

temperature of the unburned gas [z(O) = 0] by a factor 

equal to N(r+n)/2 expiN. If however, the above stipu- 
lation is dispensed with, the reaction must be assumed 

to be practically at a standstill. This. in turn. rules 
out one-dimensional stead!; propagation, 

2. DERIVATION OF EQUATION OF MOTION 

As point of reference in time (t = 0), we take the 
moment of focussing at which the front radius rl 
vanishes. The time preceding this moment is taken as 

negative. 
As is known [2], the width of the reaction zone is 

of the order l/N relative to Ir. Accordingly. at distances 

Iv--~I >> l/N, the latter may be regarded as a point 
source, and the velocity W in equations (1.1) and (1.2) 
may be replaced by a &function of strength Q: 

W(C. T) -+ Q&(1,- rI). (2.1) 

As will be shown in Section 4 (see also [IO]). the 
following asymptotic representation of Q holds at the 

zeroth approximation relative to l/N: 

Q = expiN(T- I). (2.2) 

In the sequel, we shall conveniently introduce a co- 
ordinate system (x. t) linked with the flame front and I, : 

x = I’-,‘,. (2.3) 

Insofar as the characteristic distance (at which the 

front curvature becomes effective) is of the order N. 

we introduce new variables: 

(p = 5 ; 
t 

5=-. 
N 

(2.4) 

The correctness of chosen scales of stretching will 
be verified CI postrriori through the requirements of 

asymptotic matching. 
In conjunction with (2.1)-(2.4). the set (1.1).-(1.3) 

becomes : 

^+(l -C)exp[$N(T-l)]&(u) (2.5) 
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(2.6) 

In addition, integrating (2.9) near x = 0, we find: 

(2.14) 

In order to find the second equation linking T’(0, r) 
and @O(r). we need information on the next approxi- 
mation relative to l/N. To this end, we use the linear 

combination of (2.9) and (2.10) obtained by eliminating 

p = ; 
the reaction rate: 

(2.7) 

whose solution is sought in the form of the following ;p;(T+(l-E)C) 

asymptotic expansions in (l/N): 

c = CO@, t) +; C’(x, T) + . . 
, 

where C(x, r) = 0 for x > 0 

T = TO(x, r) + $ T’(x, 5) + . . 

where T’(x, 7) = 1 for x > 0 

u= u”(x,i)+$P(x.r)+.. (2.8) 
At the first approximation, (2.15) and (2.7) have the 

form : 

p = pO(x, t) +; p’(x, T) + pO;(TO+(l-c)CO) 
@ = @O(T) +; CD’(T) + . . J 

Equations (2.5)-(2.8) yield, for the zeroth approxi- 

mation, the following set of quasi-stationary equations: 

+o-~)~ 

=~~~‘~+(l-s)exp$~~&) (2.9) 

0 

( 1’ 
0 

po uo_!!$ g 

= + L fc” g- exp+T’6(x) (2.10) 

; pUO-pO~ 
( > 

=o; p”=$; fcO=f@) (2.11) 

which, solved subject to the boundary conditions: 

TO(-co,r)=&; CO(-co,r)= 1; UO(-co,t)=O 

P(0, t) = 1; CO(O, t) = 0; 
(2.12) 

yield in turn for x < 0 

(2.16) 

(2.17) 

pl=_LY 
l-02’ J 

Bearing in mind (2.8) equation (2.16) yields for x z 0 

(2.13) T’(x, r) = T’(0, r). (2.18) 

Integrating (2.16) with respect to x in the (-co, 0) 
interval, and bearing in mind (2.18), (2.13), and the 
condition T’( - co, z) = C’( - co, T) = 0, we obtain: 



p”IT”+(l -i:)C"- 1)d.x 

+ _?~ 

0 

(1)” 
p”C’“(T’+(l-i:)C”-1)dr 

* 

l--E 
Co d_x 

L 
(2.19) 

T'(0, 5) is thus expressed through the zeroth approxi- 

mation of the problem. Using (2.13) we convert from 

.X to T” as variable of integration, whereby (2.19) 
(2.19) becomes: 

so that, in conjunction with (2.14) we have a non-linear 
differential equation for a”. 

Introducing new variables G and <. 

we have by (2.14): 

T’(0, T) = 2 In F 
5 

(2.22) 

and by (2.20) (2.22): 

The integral in (2.21) changes sign at L = I. For 
t < 0. as was already noted, < > 0 corresponds to the 
solution for L > 1, and 5 < 0- to that for L < I. 

Denoting : 

dG 
- - = P(G) 
d< 

Equation (2.23) is a first-order equation in P(G), 
namely : 

dP 2P(l-GPlnP) 

dG G 
(2.25) 

Only solutions for which d@/dt is negative, i.e. 
P > 0, have a physical meaning. 

In the (G, P)-plane, the integral curves of equation 

(2.25) from the schematic pattern shown in Fig. 2. with 
thearrows indicating positive time. At r+m(G+ ) -/-). 
the flame front must tend to normal propagation, for 
which P = 1. This requirement is the boundary con- 
dition of the problem. 

3. BEHAVIOR OF SOLUTIOIVS OF (2.25) 

Near the point P = 1, G = +CQ, the following 

asymptotics is valid for the solution of (2.25): 

As can be seen from Fig. 2, in the region G < O(L < I), 

a single monotonically-descending curve runs from 
P = 1. G = - sx to P = 0. G = O(P h G2). Accordingly. 

3Jj& ---- _ 
0 G 

Fit;. 2. Plane of equation (2.25). 

as the flame front approaches the center. its propa- 

gation velocity decreases. As is seen from equation (2.2), 
the temperature at the front also decreases mono- 

tonically to -x. However. as is shown in [4] (see 
also [2]), for the flame to be capable of propagation, 
the temperature drop in the reaction zone cannot 

exceed - RTt/E, otherwise the flame is extinguished. 
In the region G > (L > 1). the picture is different: 

a whole family of curves originates at P = 1, G = + -u ; 
part of them. monotonically ascending, terminate at 
P= +m,G= +O[G- 2,/( Pln P)]. At first glance. all 

these curves have a physical meaning, implying exist- 
ence ofan infinite number of solutions, the propagation 
velocity of each of which increases to +crj together 
with the temperature at the front. This circumstance 
(just as in the case L < 1) reflects the intermediate 
character of the obtained asymptotics [3]. It should 
be noted that the infinite set of solutions contains one 
corresponding to a minimal propagation velocity for 
every I(G). As can be seen from the figure. this solution 
is the envelope of the curves for which P + 0 at G + 0. 

Similar non-uniqueness, associated with a minimal 
propagation velocity, is discussed in [5] and [6] which 
deal respectively with wave propagation in a chain 
reaction and with a converging shock wave. In our 
own case, the hypothesis of realization of the minimal 
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propagation velocity may be verified through numeri- 
cal analysis, using initial data. 

4. VERIFICATION OF ASYMPTOTIC 
RELATJONSHJP (2.2) 

Equations (2.9) and (2.10) integrated near x = 0 
yield: 

““~~o’r)=(l-s)exp+T1(O,r) 

I dCO( - 0, r) 

L sx 
= -exp&P(O, r). 

(4.1) 

(4.2) 

The above relationships follow from the assumed 
asymptotic relationship (2.2). We shall show that they 
are a rigorous consequence of the matching conditions 
for the respective asymptotic solutions inside and out- 
side the reaction zone; by this means, relationship (2.2) 
will be verified at the zeroth approximation relative to 
l/N. Our point of departure is the set of diffusion and 
conduction equations with distributed heat and mass 
sources. To this end. the point source in (25-12.7) 
must be replaced by a corresponding reaction rate W: 

exptT’S(x) -+ W(C, T). (4.3) 

Insofar as the width of the reaction zone is of order 
l/N relative to &, we take as the characteristic space 
variable for the reaction zone: 

X=xN. (4.4) 

In this region, the asymptotic expansions for tempera- 
ture, concentration, and the constant A are sought in 
the form : 

T= l+;u(x.7)+... 

c = ; S(X, T) + . 
~ 

(4.5) 

A= A’+.... I 
The set (2.5)-(2.7) modified as per (4.3)-(4.5) for the 
zeroth approximation relative to l/N, yields: 

,2 
~j+(l-s)AoS”expO = 0 

is-AOS”expB=O. 
: 

(4.6) 

Insofar as T’(x, T) = 1, C’(x, t) = 0 for x > 0, the 
matching conditions read : 

@( + co, z) = T’(O,T) (4.7) 

a@(--co,r) a7-O(-0,r) 

ax = ax (4.8) 

S(+co,7)=0; (?S( ,,“I r) = KY&_!?). (4.9) 

Equation (4.6) in conjunction with (4.7) and (4.9), 
yields : 

0(X, T) + !F six, T) = T’(0, z) (4.10) 

and may be reduced to a single equation in 0. 

220 A”Ln 
sfp (1 -&)nm’ 

(T’-0)“expH = 0 (4.11) 

(gy-$gi~;, (T’-8)“expOdB (4.12) 

and 

2A”n!L”exp T’(0, s) 
ZZ 

(1 _E)“-T---. 

By (2.13). we have for normal propagation: 

(4.13) 

1 d@’ 
1; 

ZTO( -0, ?) -----= 
E ds l?X 

= 1-E; T’(O, Z) = 0 (4.14) 

and equations (4.8), (4.13) and (4.14) yield: 

AO = (1 -41+n 
2C’n ! 

(4.15) 

which represents the principal term for the asymptotics 
of u, (1.5). 

Finally, by (4.13) and (4.15): 

a( - co, T) 
-__ = (1 -&)exp$T’(O, T) 

r7X 
(4.16) 

which, in accordance with (4.8), is equivalent to the 
sought relationship (4.1). Equation (4.2) is an elemen- 
tary consequence of (4.10) and (4.16). 

5. ON THE JNSTABJLJTY OF NORMAL FLAME 
PROPAGATION 

The asymptotic approach developed above may be 
applied to the one-dimensional-flat flame equations to 
examine the stability of its normal propagation. In the 
case of similarity between the temperature and con- 
centration fields, i.e. at L = 1, normal propagation is 
steady-a fact established by several authors using 
various analytical methods [7-91. At L # 1, however, 
the corresponding mathematical problem is seriously 
complicated. It appears that under L > 1 and N >> 1 
the class of one-dimensional perturbation may be 
found, in relation with which the normal flame propa- 
gation is unstable. 

The subsequent numerical analysis shows the possi- 
bility ofa steady self-oscillatory regime setting in rather 
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than normal propagation. In the case of plane one- 
dimensional problem, the set (1’1-3) becomes: 

Diffusion : 

Heat conductivity: 

p(:I:+p(!~=~h.(T)~+(l-E)W(C,~) (5.2) 

Continuity and dynamic incompressibility: 

Let the flame propagating in the negative ,direction 

of axe Y, where Y = 0, corresponds to the flame front 
position at the moment of initial perturbation t = 0. 
Let us introduce a coordinate x, connected with the 

flame front and stretched variables @ and 7, (see 2.3 

and 2.4) rf = flame front position at moment t. 

In conjunction with (2.1)-(2.4) the set (5.1)-(5.3) 
becomes : 

1 ?T d@ iiT c”T 
p~-P~y-- 

?x 

=i~g+(l--~)exp[:N(T-1)16(x) (5.4) 

= i g kg- exp[iN(T- 1)16(x) (5.5) 
, 

1 2p dtD iip 2 

Hence, after the treatments, like those undertaken 

in Section 2, for the front flame coordinate in (P, C) 

plane, the equation yields: 

dP 
-= -2PlnP 
dG 

(5.7) 

where P and G are determined in (2.21) and (2.24). 
The straight line P = 1 corresponds to the normal 

flame propagation. 

dP 
-->o 
dG 

under O<P<l 

dP 
p<o under P> 1. 
dG 

In the case of L < 1, with the time growing, the integral 
curves tend to the line P = 1. At L > 1, with the time 
growing, the integral curves of the equation (5.7) get 
away from P = 1, which indicates instability of the 
normal flame propagation. The equation (5.7) describes 
the asymptotic solution of set (5.1)-(5.3) at N + co, 
and it is right only for a limited space of time (t - N). 

I I I I b 

100 I IO 120 130 140 

I- 

In order to clarify the subsequent development of Fro. 3. Flame front velocity as a function of time 

the propagations, we shall solve numerically the prob- (E = 0.25, N = 30, L = 2). 

lem of steady propagation triggered by an ignition 
source. 

Let, for the sake of simplicity, the initial ignition 
source be symmetrical with respect to r = 0. Then the 

convective terms in the equations (5.1)(5.2) may be 
removed by the transition to new coordinates 

(Lagrangian). 

I 

I 
p(x, s)dx = [. (5.8) 

In this new systea of coordinates, the set (5.4))(5.6) 

becomes : 

where 2 = K/T, F = TW (5.9) 

The problem is solved in the half space - co < < < 0, 
the solution being sought under the following initial 

and boundary conditions: 

For -0.5 < < < 0: T(0, i) = 1 

for-co<[<-0.5: T(O,<)=e 

For-ccj<i<O: C(0, [) = 1 
(5.10) 

1 

g (7,O) = $i7,0) = 0. 

The set (5.9) and (5.10) is solved in a quasi-explicit 
difference scheme of the “tripod” type, with steps 

constant both in time and over the half-space and 
related through Courant’s stability condition: 

(AT) = $(A;)’ J(E). 

For K = ,/(T), n = 1, the scheme has the form: 

where F. = N2Ctf’ exp N(l - (l/Tjk)); j = 1. 2. 3,. 

(j = cor&ponding to c = 0); and k = 1,2,3,. (k = 1 
corresponding to 7 = 0). 

The numerical calculation showed (Fig. 3) that for 
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L > 1 and sufficiently large N, a self-oscillating regime 

sets in rather than steady propagation. 
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SUR UN FRONT DE FLAMME SPHERIQUE ET CONVERGENT 

Rt%um&L’article traite de la vitesse de propagation frontale dune flamme Q symetrie spherique qui 
converge vers le centre. Ce genre de probltme peut decrire la combustion dans une zone desunie dans 
la theorie laminale d’une flamme turbulente. On montre que pour un nombre de Lewis superieur a 
l’unite, la temperature dans la zone de reaction augmente, ainsi que la vitesse de propagation, lorsque 
le front s’approche du centre. Au contraire, quand le nombre de Lewis est inferieur a I’unite, la propagation 
est ralentie et la temperature dans la zone de reaction conduit a I’extinction. 

Le probltme est trait? avec I’hypothese dune forte dependance de la vitesse de reaction vis a vis 
de la temperature. 

L’approche asymptotique developpee en resolvant ce probleme peut etre appliquee a I’etude de la 
stabilite de la propagation dune flamme. On montrerait que la propagation est instable pour un nombre 

de Lewis superieur h l’unite et qu’il s’instaure un regime oscillatoire. 

DAS VERHALTEN EINER KUGELFORMIGEN FLAMMENFRONT 

Zusammenfassung-Die Arbeit befabt sich mit der frontalen Ausbreitungsgeschwindigkeit einer kugel- 
symmetrischen Flamme, die in einem Zentrum zusammenlluft. Ein Problem dieser Art kann mit Hilfe 
der Schichtentheorie fur turbulente Flammen beschrieben werden. Es wird gezeigt, daB fiir Lewis-Zahlen 
griiger 1 die Temperatur in der Reaktionszone und die Ausbreitungsgeschwindigkeit ansteigt, wenn 
die Flammenfront sich dem Zentrum nahert. Im Gegensatz hierzu verlauft die Ausbreitung langsamer 
bei bis zum Erloschen steigender Temperatur in der Reaktionszone fur Lewis-Zahlen kleiner 1. Bei der 
Losung des Problems wird angenommen, da0 die Reaktionsrate stark von der Temperatur abhangt. 
Die entwickelte Nlherungslosung kann bei der Untersuchung der Stabilitat normaler Flammenausbreitung 
angewendet werden. Der Artikel sol1 zeigen, daS bei Lewis-Zahlen groSer 1 die Ausbreitung instabil 

wird und Eigenschwingungsverhalten einsetzt. 

0 CYXAIOIIIEMCR C0EPM’IECKOM QPOHTE HflAMEHM 

AHHoTaqmr - B CTaTbe paCCMaTpMBaeTCn @pOHTa.UbHafl CKOpOCTb PaCnpOCTpaHeHHR C$epMqeCKM 

CMMMeTpMqHOrO rlnaMCHM, CXOR5ltLlerOC~ B @OKyC. c IlOMOlllhKJ 3TOn 3aEIVM MOWZT 6blTb OllMCaH 

npouecc ropeHwn B pa3benwHeHHoti 3oHe B TeopMM pacCnoeHw4 Typ6y,ieHTtioro n;lak4eriw. nOKa3aH0, 

wo ecnki wcno JIbiowca 6onbme enuuuubi, ro TeMnepaTypa B 30He peauww Bo3pacTaeT meCTe co 

CKOpOCTbffl paCnpOCTpaHeHMn rlnaMeHM rl0 MepC npH6nwxeHwn @pOHTa K @OKyCy. M HaOGopOT, eCII1 
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3anaVa pewHa np~ ycnowi~,q~o cKopocTb peaKtwf~4 cmbH0 3afwm4T OT TehlnepaTyphl. 

.&XlMflTOTM'iWKMti MeTO& pa3pa6OTatlHblii UpM pClUCHMM 3TOfi 3ailaYcl. MOXeT 6blTb MCIlO>lb30- 

BaH LWl H3yYeHUS yCTOL+illBOcTIl IiOl_7Ma.~bHOil CKOpOcTM pXrQ~OcTpaHeHil9 IlflahlellM. ABTOphl 

CTaTbM XOTIlT nOKa?aTb, '(TO ,TpM Y!dC.Ue J~bIoMCa 6onblue enClHMUbl paCIl[>OCTpaHeHMe ",,ah,eHM 

RBnReTCfl HeyCTOi~SMBbl'll H B03HMKaCT peXKMM aBTOKOWS6allMii. 


